Exercise 1

Consider the vector field

$$
\mathbf{v}=\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}
$$

Evaluate both sides of Eq. A.5-1 over the region bounded by the planes $x_{1}=0, x_{1}=1 ; x_{2}=0$, $x_{2}=2 ; x_{3}=0, x_{3}=4$.

Solution

Eq. A.5-1 states the divergence theorem,

$$
\iiint_{V}(\nabla \cdot \mathbf{v}) d V=\oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S
$$

where V is a closed region in space enclosed by a surface S and $\hat{\mathbf{n}}$ is the unit vector normal to this surface directed outwardly.

The Left-hand Side

To evaluate the left-hand side, determine the divergence of \mathbf{v}.

$$
\nabla \cdot \mathbf{v}=\frac{\partial}{\partial x_{1}}\left(x_{1}\right)+\frac{\partial}{\partial x_{2}}\left(x_{3}\right)+\frac{\partial}{\partial x_{3}}\left(x_{2}\right)=1
$$

The left-hand side simplifies to the volume of the region in question.

$$
\begin{aligned}
\iiint_{V}(\nabla \cdot \mathbf{v}) d V=\iiint_{V} d V & =\int_{0}^{4} \int_{0}^{2} \int_{0}^{1} d x_{1} d x_{2} d x_{3} \\
& =\left(\int_{0}^{1} d x_{1}\right)\left(\int_{0}^{2} d x_{2}\right)\left(\int_{0}^{4} d x_{3}\right) \\
& =(1-0)(2-0)(4-0) \\
& =8
\end{aligned}
$$

The Right-hand Side

The volume is a rectangular box with six faces, so the closed surface integral splits up into six double integrals - one for each face.

$$
\begin{aligned}
\oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S=\iint_{S_{1}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S+\iint_{S_{2}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S & +\iint_{S_{3}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S \\
& +\iint_{S_{4}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S+\iint_{S_{5}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S+\iint_{S_{6}}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S
\end{aligned}
$$

Figure 1: Schematic of the rectangular box and its six faces.
$\boldsymbol{\delta}_{1}$ is the unit vector normal to the two faces at $x_{1}=0$ and $x_{1}=1, \boldsymbol{\delta}_{2}$ is the unit vector normal to the two faces at $x_{2}=0$ and $x_{2}=2$, and $\boldsymbol{\delta}_{3}$ is the unit vector normal to the two faces at $x_{3}=0$ and $x_{3}=4$. Since the outward normal vectors at $x_{1}=0, x_{2}=0$, and $x_{3}=0$ point in the negative direction, there's a minus sign in front of these unit vectors.

$$
\begin{aligned}
\oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S= & \iint_{S_{1}}\left(-\boldsymbol{\delta}_{1}\right) \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S+\iint_{S_{2}} \boldsymbol{\delta}_{1} \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S \\
& +\iint_{S_{3}}\left(-\boldsymbol{\delta}_{2}\right) \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S+\iint_{S_{4}} \boldsymbol{\delta}_{2} \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S \\
& +\iint_{S_{5}}\left(-\boldsymbol{\delta}_{3}\right) \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S+\iint_{S_{6}} \boldsymbol{\delta}_{3} \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d S
\end{aligned}
$$

Evaluate the dot products.

$$
\begin{aligned}
& \oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S=\iint_{S_{1}}\left(-x_{1}\right) d S+\iint_{S_{2}} x_{1} d S+\iint_{S_{3}}\left(-x_{3}\right) d S \\
&+\iint_{S_{4}} x_{3} d S+\iint_{S_{5}}\left(-x_{2}\right) d S+\iint_{S_{6}} x_{2} d S
\end{aligned}
$$

At $S_{1}, x_{1}=0 ;$ at $S_{2}, x_{1}=1 ;$ at $S_{3}, x_{2}=0 ;$ at $S_{4}, x_{2}=2 ;$ at $S_{5}, x_{3}=0 ;$ and at $S_{6}, x_{3}=4$.

$$
\begin{aligned}
& \oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S=\int_{0}^{4} \int_{0}^{2}(-0) d x_{2} d x_{3}+\int_{0}^{4} \int_{0}^{2} 1 d x_{2} d x_{3}+\int_{0}^{4} \int_{0}^{1}\left(-x_{3}\right) d x_{1} d x_{3} \\
&+\int_{0}^{4} \int_{0}^{1} x_{3} d x_{1} d x_{3}+\int_{0}^{2} \int_{0}^{1}\left(-x_{2}\right) d x_{1} d x_{2}+\int_{0}^{2} \int_{0}^{1} x_{2} d x_{1} d x_{2}
\end{aligned}
$$

The first double integral is zero. Bringing the constants in front of the others, we find that four of them cancel.

$$
\begin{aligned}
\oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S=\int_{0}^{4} \int_{0}^{2} d x_{2} d x_{3}-\int_{0}^{4} \int_{0}^{1} x_{3} d x_{1} d x_{3} & +\int_{0}^{4} \int_{0}^{1} x_{3} d x_{1} d x_{3} \\
& -\int_{0}^{2} \int_{0}^{1} x_{2} d x_{1} d x_{2}+\int_{0}^{2} \int_{0}^{1} x_{2} d x_{1} d x_{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\oiint_{S}(\hat{\mathbf{n}} \cdot \mathbf{v}) d S & =\int_{0}^{4} \int_{0}^{2} d x_{2} d x_{3} \\
& =\left(\int_{0}^{2} d x_{2}\right)\left(\int_{0}^{4} d x_{3}\right) \\
& =(2-0)(4-0) \\
& =8 .
\end{aligned}
$$

We conclude that the divergence theorem is verified.

